Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: the case of the typical EF-hand calcium-binding parvalbumin.

نویسندگان

  • J M Zanotti
  • M C Bellissent-Funel
  • J Parello
چکیده

The influence of hydration on the internal dynamics of a typical EF-hand calciprotein, parvalbumin, was investigated by incoherent quasi-elastic neutron scattering (IQNS) and solid-state 13C-NMR spectroscopy using the powdered protein at different hydration levels. Both approaches establish an increase in protein dynamics upon progressive hydration above a threshold that only corresponds to partial coverage of the protein surface by the water molecules. Selective motions are apparent by NMR in the 10-ns time scale at the level of the polar lysyl side chains (externally located), as well as of more internally located side chains (from Ala and Ile), whereas IQNS monitors diffusive motions of hydrogen atoms in the protein at time scales up to 20 ps. Hydration-induced dynamics at the level of the abundant lysyl residues mainly involve the ammonium extremity of the side chain, as shown by NMR. The combined results suggest that peripheral water-protein interactions influence the protein dynamics in a global manner. There is a progressive induction of mobility at increasing hydration from the periphery toward the protein interior. This study gives a microscopic view of the structural and dynamic events following the hydration of a globular protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution.

Carp parvalbumin coordinates calcium through one carbonyl oxygen atom and the oxygen-containing side chains of 5 amino acid residues, or 4 residues and a water molecule, in a helix-loop-helix structural motif. Other calcium-binding proteins, including calmodulin and troponin C, also possess this unique calcium-binding design, which is designated EF-hand or calmodulin fold. Parvalbumin has two s...

متن کامل

The Role of Low Frequency Collective Modes in Biological Function: Ligand Binding and Cooperativity in Calcium-Binding Proteins

We have studied the protein dynamics that have been widely discussed as important for direct control of protein function. We used a combination ofNMR relaxation, x-ray scattering and molecular dynamics (MD) simulation and to probe the dynamic fluctuations in the Ca2+-binding protein calmodulin (CaM). The experimental data provided critical tests for the MD simulations. We also completed spectro...

متن کامل

Solution structure and backbone dynamics of Calsensin, an invertebrate neuronal calcium-binding protein.

Calsensin is an EF-hand calcium-binding protein expressed by a subset of peripheral sensory neurons that fasciculate into a single tract in the leech central nervous system. Calsensin is a 9-kD protein with two EF-hand calcium-binding motifs. Using multidimensional NMR spectroscopy we have determined the solution structure and backbone dynamics of calcium-bound Calsensin. Calsensin consists of ...

متن کامل

Difference in the hydration water mobility around F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

Hydration water is essential for a protein to perform its biological function properly. In this study, the dynamics of hydration water around F-actin and myosin subfragment-1 (S1), which are the partner proteins playing a major role in various cellular functions related to cell motility including muscle contraction, was characterized by incoherent quasielastic neutron scattering (QENS). The QEN...

متن کامل

The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins.

The structure of bovine intestinal calcium-binding protein (ICaBP) has been determined crystallographically at a resolution of 2.3 A and refined by a least squares technique to an R factor of 17.8%. The refined structure includes all 600 non-hydrogen protein atoms, two bound calcium ions, and solvent consisting of one sulfate ion and 36 water molecules. The molecule consists of two helix-loop-h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 76 5  شماره 

صفحات  -

تاریخ انتشار 1999